Reverb

Reverberation, in psychoacoustics and acoustics, is a persistence of sound after the sound is produced. A reverberation, or reverb, is created when a sound or signal is reflected causing numerous reflections to build up and then decay as the sound is absorbed by the surfaces of objects in the space – which could include furniture, people, and air. This is most noticeable when the sound source stops but the reflections continue, decreasing in amplitude, until they reach zero amplitude.

Reverberation is frequency dependent: the length of the decay, or reverberation time, receives special consideration in the architectural design of spaces which need to have specific reverberation times to achieve optimum performance for their intended activity. In comparison to a distinct echo, that is detectable at a minimum of 50 to 100 ms after the previous sound, reverberation is the occurrence of reflections that arrive in a sequence of less than approximately 50 ms. As time passes, the amplitude of the reflections gradually reduces to non-noticeable levels. Reverberation is not limited to indoor spaces as it exists in forests and other outdoor environments where reflection exists.

Reverberation occurs naturally when a person sings, talks, or plays an instrument acoustically in a hall or performance space with sound-reflective surfaces. The sound of reverberation is often electronically added to the vocals of singers and to musical instruments. This is done in both live sound systems and sound recordings by using effects units. Effects units that are specialized in the generation of the reverberation effect are commonly called reverbs.

Whereas reverberation normally adds to the naturalness of recorded sound by adding a sense of space, reverberation can reduce speech intelligibility, especially when noise is also present. Users of hearing aids frequently report difficult in understanding speech in reverberant, noisy situations. Reverberation is a very significant source of mistakes in automatic speech recognition. Dereverberation is the process of reducing the level of reverberation in a sound or signal.

Chamber reverberators

The first reverb effects created for recordings used a real physical space as a natural echo chamber. A loudspeaker would play the sound, and then a microphone would pick it up again, including the effects of reverb. Although this is still a common technique, it requires a dedicated soundproofed room, and varying the reverb time is difficult.

Plate reverberators

A plate reverb system uses an electromechanical transducer, similar to the driver in a loudspeaker, to create vibrations in a large plate of sheet metal. The plate’s motion is picked up by one or more contact microphones whose output is an audio signal which may be added to the original "dry" signal. In the late 1950s, Elektro-Mess-Technik (EMT) introduced the EMT 140; a 600-pound (270 kg) model popular in recording studios, contributing to many hit records such as Beatles and Pink Floyd albums recorded at Abbey Road Studios in the 1960s, and others recorded by Bill Porter in Nashville's RCA Studio B. Early units had one pickup for mono output, and later models featured two pickups for stereo use. The reverb time can be adjusted by a damping pad, made from framed acoustic tiles. The closer the damping pad, the shorter the reverb time. However, the pad never touches the plate. Some units also featured a remote control.

Spring reverberators

A spring reverb system uses a transducer at one end of a spring and a pickup at the other, similar to those used in plate reverbs, to create and capture vibrations within a metal spring. Laurens Hammond was granted a patent on a spring-based mechanical reverberation system in 1939. The Hammond Organ included a built-in spring reverberator.

Spring reverberators were once widely used in semi-professional recording and are frequently incorporated into Guitar amplifiers due to their modest cost and small size. One advantage over more sophisticated alternatives is that they lend themselves to the creation of special effects; for example rocking them back and forth creates a thundering, crashing sound caused by the springs colliding with each other.

Digital reverberators

Digital reverberators use various signal processing algorithms in order to create the reverb effect. Since reverberation is essentially caused by a very large number of echoes, simple reverberation algorithms use several feedback delay circuits to create a large, decaying series of echoes. More advanced digital reverb generators can simulate the time and frequency domain response of a specific room (using room dimensions, absorption, and other properties). In a music hall, the direct sound always arrives at the listener's ear first because it follows the shortest path. Shortly after the direct sound, the reverberant sound arrives. The time between the two is called the "pre-delay."

Reverberation, or informally, "reverb" or "verb", is one of the most universally used audio effects and is often found in guitar pedals, synthesizers, effects units, digital audio workstations (DAWs) and VST plug-ins.

Convolution reverb

Convolution reverb is a process used for digitally simulating reverberation. It uses the mathematical convolution operation, a pre-recorded audio sample of the impulse response of the space being modeled, and the sound to be echoed, to produce the effect. The impulse-response recording is first stored in a digital signal-processing system. This is then convolved with the incoming audio signal to be processed.